
JOURNAL OF COMPUTATIONAL PHYSICS 90, 271-291 (1990) 

Adaptive Mesh Generation for Viscous Flows 
Using Delaunay Triangulation 

DIMITRI J. MAVRIPLIS 

Institute for Computer Applications in Science and Engineering, 
NASA Langley Research Center, Hampton, Virginia 23665 

Received January 9, 1989; revised June 26, 1989 

A method for generating an unstructured triangular mesh in two dimensions, suitable for 
computing high Reynolds number flows over arbitrary configurations is presented. The 
method is based on a Delaunay triangulation, which is perfored in a locally stretched space, 
in order to obtain very high-aspect-ratio tiangles in the boundary layer and wake regions. It 
is shown how the method can be coupled with an unstructured Navier-Stokes solver to 
produce a solution-adaptive mesh generation procedure for viscous flows. ‘n 1990 Academic 

Press, Inc 

1. INTRODUCTION 

In recent years, the use of unstructured triangular and tetrahedral meshes in two 
and three dimensions has become more widespread for computational fluid 
dynamics problems. The advantages of unstructured meshes lie in their ability to 
deal with arbitrarily complex geometries, while providing a natural setting for the 
use of adaptive mesh enrichment techniques. On the other hand, the accuracy of 
unstructured mesh discretizations and the efficiency of unstructured mesh solvers 
have generally fallen short of their structured mesh counterparts. The appearance 
of more efficient and accurate Euler solvers for unstructured meshes [l-3], com- 
bined with the benefits of adaptive meshing and a general drive to problems of 
higher geometric complexity have combined to make unstructured meshes the 
preferred choice for many inviscid flow problems [4, 51. However, few attempts at 
solving high Reynolds number viscous flows about complex configurations with 
unstructured meshes are known. The efficient solution of such flows requires the 
generation of highly stretched elements in the thin boundary-layer regions, where 
the resolution required in the direction normal to the layer can be several orders 
of magnitude greater than that in the streamwise direction. Present efforts at com- 
puting such flows have concentrated on the use of composite structured-unstruc- 
tured meshes [6-81, where a thin structured triangular or quadrilateral mesh is 
placed in the boundary-layer regions, and an unstructured mesh is used to fill the 
remainder of the domain. The presence of a structured mesh in the regions of 
viscous flow can be advantageous, for it enables the use of proven and efficient 
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structured-mesh flow solvers in these regions, where the behavior of the governing 
equations can become considerably stiff. This approach also enables a 
straightforward implementation of the often-used algebraic turbulence models for 
compressible turbulent flow calculations. However, it has the disadvantage of 
resulting in a nonautomatic grid generation procedure. The extent of the structured 
region and the definition of the structured-unstructured interface are somewhat 
arbitrary and must be prescribed interactively. This procedure quickly runs into dif- 
ficulty as more complex geometries are involved, such as, for example, geometries 
consisting of multiple closely positioned bodies. In such cases, the structured 
meshes from two neighboring bodies may tend to overlap unless they are kept 
extremely thin, in which case it may prove difficult to obtain a smooth variation of 
elements between the stretched structured mesh and the isotropic unstructured 
mesh. Furthermore, the use of adaptive meshing in the regions of viscous flow tends 
to destroy the structure of the these thin local boundary meshes, thus complicating 
the implementation of the flow solver and turbulence model in these regions. In this 
work, it is proposed to employ an unstructured mesh of triangles throughout the 
entire domain. This approach requires extreme stretching of the unstructured mesh 
in the boundary-layer regions. However, it has the advantage of providing a com- 
pletely automatic grid generation tool for arbitrary configurations, obviating the 
need for any human interaction, such as that required to define the structured- 
unstructured interface in the former approach. It also offers the possibility of 
obtaining a fully adaptive smoothly varying mesh throughout the viscous regions as 
well as in regions where the distance between neighboring boundaries may be 
smaller than the boundary-layer thickness. The recent success of fully explicit multi- 
grid Navier-Stokes solvers [9, lo], which have also been applied to unstructured 
meshes [ 111, demonstrate the possibility of obtaining efficient solutions employing 
unstructured meshes throughout the viscous regions. While the use of unstructured 
meshes considerably complicates the implementation of algebraic turbulence models 
[12], it is felt that, for the complicated geometries for which these meshes are 
intended, a more general higher level turbulence model, such as a two-equation 
model, will be required due to the more complicated flow patterns which will 
prevail. Such models require the solution of two additional field equations which 
can be discretized in a straightforward manner on unstructured meshes. In fact, 
two-equation turbulence models have also been advocated for use on composite 
structured-unstructured meshes [ 81. 

Of the various algorithms for generating triangular meshes in two dimensions, 
the advancing-front method [ 131 and the Delaunay triangulation method [ 14, 151 
have been successfully applied to generate solution-adaptive evolving meshes. 
Sophisticated implementations of the advancing-front method incorporate direc- 
tional stretching and refinement by successive remeshing according to stretching 
factors and directions obtained from a flow solution on a previous mesh. While this 
technique has proven valuable for inviscid flow calculations, the stretchings 
obtained are still several orders of magnitude smaller than that required for 
resolving viscous boundary-layer flows. 
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The first application of Delaunay triangulation to aerodynamic problems was 
performed by Weatherill [ 161. The extension of this procedure to three dimensions 
has been pursued by Baker [ 173. Delaunay triangulation is particularly well suited 
for adaptive meshing techniques, since it may be formulated as a sequential and 
local process. New points may be added and triangulated locally without the need 
for remeshing the domain in whole or in part. For a given set of data points, a 
Delaunay triangulation will produce the most equiangular triangles possible and 
thus is not well suited for the generation of directionally relined meshes. In this 
paper, it will be shown how a Delaunay triangulation can be modified to accom- 
modate directional stretching of any desired magnitude. 

2. THE DELAUNAY TRIANGULATION 

Given a set of points in two dimensions, there exist many ways of joining them 
together to form a set of non-overlapping triangles. A Delaunay triangulation 
represents a unique construction of this type, which obeys certain specific proper- 
ties, The geometric dual of the Delaunay triangulation is known as the Dirichlet 
tessalation. It is constructed by associating with each data point the area of the 
plane which is closer to that point, in terms of Euclidean distances, than to any 
other point in the plane. These regions have polygonal shapes and the tessalation 
of a closed domain results in a set of non-overlapping convex polygons covering the 
entire domain. If all point pairs whose Dirichlet regions have a face in common are 
joined by straight line segments, the Delaunay triangulation of these points is 
obtained. Figure 1 depicts the Dirichlet regions and associated Delaunay triangula- 
tion for a small set of points. 

A Delaunay triangulation obeys the circumcircle property, which states that no 

FIG. 1. Dirichlet tessalation and Delaunay triangulation of a set of points showing the circumcircle 
of one of the triangles. 
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vertex from any triangle may lie within the circumcircle of any other triangle. This 
can also be shown [18] to be equivalent to the equiangular property, which states 
that a Delaunay triangulation is that which maximizes the minimum of the six 
angles in any pair of triangles of the mesh which make up a convex quadrilateral. 
Each of these properties may be used as the basis for a method of constructing a 
Delaunay triangulation. 

2.1. Bowyer’s Algorithm 

Bowyer’s algorithm [19] makes use of the circumcircle property to generate a 
Delaunay triangulation in a sequential manner. The mesh points are introduced one 
at a time into an existing triangulation. The triangles whose circumcircles are inter- 
sected by the new mesh point are flagged. These may be quickly determined by first 
locating the triangle which encloses the new point. The circumcircle of this triangle 
must be intersected by the new point, and so it is flagged. The neighbors of this 
triangle are then searched, and then their neighbors, thus proceeding outwards in 
a tree-search pattern, each leg of which terminates when a non-intersected triangle 
has been located. The union of the flagged triangles forms a convex polygonal 
region, and a new structure is defined in this region by joining the new point to all 
the vertices of the polygon. Proofs that the polygon is convex and that the resulting 
triangulation is indeed a Delaunay structure can be found in the literature [17]. If 
an efficient search strategy is employed, Bowyer’s algorithm exhibits linear com- 
putational complexity with the number of mesh points. 

2.2. Diagonal Swapping Algorithm 

This algorithm, originally proposed in [20], and reviewed in [ 181, makes use of 
the equiangular property. Assuming we have an arbitrary triangulation of a given 
set of points, we may proceed to transform it into a Delaunay triangulation by 
repeatedly swapping the positions of the edges in the mesh in accordance with the 
equiangular property. Hence, each pair of triangles which constitute a convex 
quadrilateral are examined. The .two possible configurations for the diagonal 
interior to the quadrilateral are examined, as shown in Fig. 2, and the one which 

FIG. 2. The two possible configurations for the diagonal in a convex quadrilateral and the six angles 
associated with the most equiangular configuration (solid line diagonal). 



ADAPTIVEMESHGENERATION 275 

maximizes the minimum of the six interior angles of the quadrilateral is chosen. 
Each time an edge swap is performed, the triangulation becomes more equiangular. 
Multiple edge swapping passes through the entire mesh are then effected, until the 
most equiangular (Delaunay) triangulation is obtained. Although this algorithm is 
guaranteed to converge, it has a much higher complexity than Bowyer’s algorithm 
and is only useful for constructing an equiangular triangulation either when the 
initial mesh is coarse, or when it represents a small deviation from a Delaunay 
triangulation. 

3. STRETCHING FACTORS 

Equiangular triangulations, which have been termed “best fit or optimal 
triangulations” may be desirable if one wishes to tessalate or subdivide a domain 
in a uniform manner. However, by its very nature, such triangulations are ill-suited 
for the generation of meshes with directional stretchings. In fact, even if the mesh 
points are distributed sparsely in one direction and compactly in the perpendicular 
direction, the Delaunay construction will generally produce low aspect-ratio 
triangles of widely varying size. Thus, the standard Delaunay construction must be 
modified to accommodate directional mesh stretching. 

We proceed by defining a stretching vector, i.e., a direction and magnitude, at 
each point of the mesh. It is important to note that this stretching is a local 
property, and that it must vary smoothly throughout the domain. Because a 
Delaunay triangulation is a local construction, we may thus map a local region of 
the mesh onto the stretched space defined by the stretching vector in that region, 
perform the triangulation in this space, and then project the triangulation back into 
physical space. A stretching vector at a point is given by its magnitude s and its 
direction 8, where 

Sbl and -14<$<71 
2 2’ 

When s = 1, no stretching occurs. If a stretching smaller than unity is encountered, 
it is replaced by the inverse stretching in the perpendicular direction. The permissible 
values of 8 in Eq. (1) reflect the fact that two stretchings of equal magnitudes in 
opposite directions are equivalent. 

The mapped space is defined uniquely by the stretching vectors in the flow field. 
It is obtained by considering a two-dimensional control surface in three-dimen- 
sional space as described in [21]. For a one-dimensional problem, the analogous 
control surface consists of a line in two-dimensional space. If a grid with non- 
uniform spacing is employed, this “control line” is constructed such that the mesh 
points are equidistant from one another in terms of arc-length along the line, as 
shown in Fig. 3. For the two-dimensional problem, a control surface is constructed 
such that, when the mesh point distribution from the physical space is projected 
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FIG. 3. Two-dimensional control line for one-dimensional grid. Variable grid spacing Ax is trans- 
formed to constant spacing 6 along control line. 

onto the control surface, these points are approximately equidistant from each 
other in all space directions (isotropically) in terms of arc-length along the control 
surface, as shown in Fig. 4. Thus, a Delaunay triangulation can be constructed on 
the control surface which, when projected back down onto the physical space will 
result in a triangulation of elements stretched in the desired direction and amount, 
as originally defined by the local stretching. If d represents a Euclidean distance in 
physical space: 

d2 = Ax2 + Ay2 

then, in the mapped space, it is replaced by 

d2 = Ax2 + Ay2 + Az2, 

where 

(2) 

(3) 

AZ = [Ax sin 13 - Ay cos O](s - 1). (4) 

For a stretching of unity, AZ vanishes and the mapped space and the physical space 
become identical. If for example, a stretching of s is applied in the x-coordinate 
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FIG. 4. Three-dimensional control surface for two-dimensional grid. Delaunay triangulation on the 
control surface is transformed to stretched triangulation in physical space as determined by the direction 
and magnitude of the stretching vector s. 

4. Three-dimensional control surface for two-dimensional grid. Delaunay triangulation on the 
surface is transformed to stretched triangulation in physical space as determined by the direction 

lgnitude of the stretching vector s. 

X X 

direction, as would be required to resolve a boundary layer aligned with this direc- 
tion, then, taking 8 = 0, an increment in the x direction maps to 

6, = Ax 

and an increment in the y direction maps to 

(5) 

(6) 

which, for large values of S, approaches 

6,, = s Ay. (7) 

Thus, if we have a distribution of mesh points in the physical space which is closely 
packed in the y-direction and sparse in the x-direction, then, in the mapped 
space, this mesh point distribution becomes more uniform in both directions. By 
triangulating this mapped mesh point distribution, we obtain an equiangular 
triangulation in the stretched space and a directionally stretched mesh in the 
physical space. If the diagonal swapping algorithm is to be used for constructing the 
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triangulation, then the six interior angles of each convex quadrilateral in the locally 
stretched space must be considered. On the other hand, when Bowyer’s algorithm 
is employed, the procedure can be thought of as the construction of a modified 
Delaunay triangulation, where the circumcircles of the triangles in the stretched 
space correspond to ellipses in the physical space. 

In the implementation of this technique, a simplification is effected by requiring 
that the mapping apply only locally and that, in this region, the stretching vectors 
can be assumed to be constant, taken as the average of all stretching vectors in the 
region in which the mapping applies. Thus locally, the control surface becomes a 
control plane, and the calculation of arc lengths is no longer required: they may 
simply be replaced by straight line segments along the plane which can be com- 
puted as distances in three dimensions. Furthermore, the definition of a control sur- 
face z =f(x, y) covering the entire domain, the topology of which can be extremely 
complicated, is no longer necessary. We are merely required to calculate increments 
in z between neighboring points, according to the direction of the control surface 
or plane, which applies only locally. The necessary condition for this stretched 
triangulation to succeed requires that the local variation of the stretching vectors in 
space be small compared with the average local cell size. Thus, in regions were the 
stretching values vary rapidly, a line mesh resolution is needed so that, on the scale 
of the local mesh cells, the assumption of a constant stretching can be made and 
the stretched space appears locally planar or Euclidean. 

4. INITIAL MESH GENERATION 

In the above discussion, it has been assumed that an initial triangulation with 
adequate resolution in highly stretched regions exists and that all further modilica- 
tions or refinements of the mesh are of a purely local nature. However, the con- 
struction of an initial mesh is a global procedure, and thus local stretching values 
cannot be directly accommodated at this initial stage. To circumvent this difficulty, 
a regular Delaunay triangulation is first generated in physical space using Bowyer’s 
algorithm, while disregarding the stretching values. Although this step involves 
non-local procedures, it results in a discretization of the physical space upon which 
purely local procedures may now be performed. The edge swapping algorithm is 
then employed to transform the mesh from an equiangular triangulation in physical 
space, to an equiangular triangulation in the stretched space. Because the initial 
mesh need only be coarse and, since no edge swapping is required in regions where 
the stretching values are small, the edge swapping algorithm can be expected to 
converge rapidly. Once this initial coarse stretched mesh is obtained, it can be 
adaptively refined by adding points and retriangulating locally following Bowyer’s 
algorithm in the locally stretched space. 
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5. GENERAL PROCEDURE FOR MULTI-ELEMENT AIRFOILS 

To generate a stretched Delaunay mesh around an arbitrary geometry, a set of 
mesh points and their associated stretching vectors must first be defined. For the 
case of a multi-element airfoil configuration, this is achieved by first generating a 
structured quadrilateral C-mesh about each airfoil element, using a hyperbolic grid 
generator developed specifically for single airfoil geometries [22], thus resulting in 
a set of overlapping structured meshes as shown in Fig. 5. Stretching vectors are 
then defined at each mesh point, by taking their magnitude s as 

(8) 

and their direction equal to the direction of the 5 or v structured mesh lines, 
depending on whether the first or second values are chosen for s in Eq. (8). Here, 

FIG. 5. Overlapping structured C-meshes for multi-element airfoil geometry providing initial 
definition of mesh-point distribution and local stretching factors. 
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d( and dq represent the local spacing of the structured C-mesh in the two mesh 
coordinate directions. 

The mesh point distribution resulting from the set of overlapping C-meshes can 
now be used as the basis for a Delaunay triangulation. An initial triangulation 
is set up by joining the trailing-edge point of the main airfoil to all the outer 
boundary points. The points on the surface of the airfoils are then introduced 
and triangulated into the existing structure using Bowyer’s algorithm. Because 
neighboring surface points on a given airfoil are much closer to each other than they 
are to any points on other airfoils, or to the far-field boundary points, the resulting 
triangulation is body conforming. That is, the triangulation contains elements 
inside the regions defined by the airfoils, as well as in the exterior of these regions, 
and the interior triangles all have a face aligned with the airfoil surfaces. These 
interior triangles are then identified and protected, thus preventing their structure 
from being broken when new mesh points are introduced, and hence preserving the 
integrity of the boundaries. The remaining mesh points are then introduced and 
triangulated into the existing structure. Because the mesh points are introduced in 
a sequential manner, in the initial stages of this construction, an extremely coarse 
grid containing a small subset of the total number of mesh points, and consisting 
of a small number of very large triangles will cover the entire domain. Thus, when 
introducing and retriangulating new mesh points, large regions of the domain will 
be affected, as shown in Fig. 6, and thus Bowyer’s algorithm can no longer be 
considered to be a purely local process. Hence local stretching values cannot be 
taken into account at this stage, and a Delaunay triangulation in the physical space 
must be generated. However, once this triangulation has been constructed, the 
space is sufficiently discretized so that all further operations may be effected in a 
purely local manner. The next step consists of applying a Laplacian-type averaging 
procedure to the local stretching vectors over the existing Delaunay triangulation, 
thus ensuring a smoothly varying distribution of the stretching throughout the 
domain. The edge swapping routine is then applied in conjunction with the 
smoothed local stretching values to obtain a Delaunay triangulation in the 
stretched space. This mesh may finally be smoothed by slightly repositioning the 
points according to a Laplacian filtering operation described previously [ 11. 

Once this initial stretched triangulation has been generated, it may be combined 
with a flow solver to produce an adaptive mesh refinement procedure, where the 
mesh point distribution is defined by the evolving solution of the flow field. For 
steady state calculations, this corresponds to converging the solution on the initial 
coarse mesh, adding points in regions where the computed flow gradients are large, 
and retriangulating these points into the existing structure using Bowyer’s algo- 
rithm in the locally stretched space. When new points are introduced, they are 
assigned stretching values taken as the average of the stretchings of the neigboring 
points, thus maintaining a smooth distribution of stretching throughout the 
domain. When points are added on the surface of an airfoil, they must be reposi- 
tioned onto the original surface definition of the airfoil, which, for curved surfaces, 
will not coincide with the position determined by linear interpolation between the 
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FIG. 6. Triangulation ofsingle airfoil geometry obtained in initial stages of Bowyer’s algorithm when 
only a small subset of total grid points have been introduced. Dashed lines depict protected triangles 
interior to airfoil; dotted lines depect triangulation of newly inserted point. 

two adjacent surface points. The new surface points are then triangulated by joining 
them to the two neighboring surface points, and to the vertices of all triangles 
exterior to the airfoil whose circumcircles are intersected. The flow solution is then 
interpolated onto the new finer mesh, and the entire solution-adaptation process is 
repeated. In this procedure, the total number of mesh points increases at each adap- 
tation stage, since new mesh points are added in regions of large flow gradients, 
and no provisions are made for removing mesh points in regions of small gradients. 
For transient flow problems, where flow features may propagate across the domain, 
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this may prove to be unacceptably inefficient. However, for steady-state flow 
calculations, such as those considered in this work, the salient flow features remain 
approximately stationary throughout the convergence process, and mesh adapta- 
tion by enrichment alone yields a suitable mesh point distribution. 

6. FLOW SOLVING ALGORITHM 

Adaptive meshing strategies necessarily involve interaction between the mesh- 
generation procedure and the flow-solution algorithm. The steady-state solution of 
the full Navier-Stokes equations on unstrucutred meshes is obtained following the 
method described in [ll]. The flow variables are stored at the vertices of the 
triangles, and the gradients necessary for computing the viscous stresses in the 
equations are computed at the center of each triangular element by integrating the 
appropriate flow variables around the boundary of each triangle. 

The discretization in space of the governing equations is then obtained through 
a Galerkin finite-element technique operating on these quantities and employing a 
lumped mass matrix. Additional artificial dissipation terms are required for stability 
and they are constructed as a blend of a Laplacian and biharmonic operator in the 
flow variables. Once the equations have been discretized in space, they are 
integrated in time until the steady-state solution is obtained using a multi-stage 
Runge-Kutta time-stepping scheme. Implicit smoothing of the residuals is 
employed to accelerate convergence. In future applications, a sequence of coarser 
unstructured meshes may be generated, and the unstructured multigrid algorithm of 
[ 111 may be employed to further improve the efficiency of the solver. At present, 
only laminar flows have been considered. For turbulent flow calculations, a lield- 
equation turbulence model may be discretized and solved on the unstructured 
mesh. 

7. RESULTS 

As a first example, an adaptive Navier-Stokes triangular mesh has been 
generated about a single NACA 0012 airfoil. An initial mesh, containing 1360 
points, is first generated by constructing a structured C-mesh around the airfoil 
with a hyperbolic grid generator, triangulating this point distribution, and then 
swapping the diagonals. The full Navier-Stokes equations are then discretized and 
solved for on this mesh. The mesh is then adaptively relined according to the local 
gradient of density. The difference in density along each edge of the mesh is 

FIG. 7. Illustration of the adaptively generated stretched triangulation about a NACA 0012 airfoil 
including details at the leading and trailing edges (number of points = 2316). 
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examined. When this value is larger than the average difference of the density across 
all the mesh edges, a new point is added midway along that edge. These new points 
are then triangulated into the existing mesh using Bowyer’s algorithm in the locally 
stretched space. The refined mesh is then smoothed out by slightly repositioning the 
mesh points according to a Laplacian filtering operation [l] to ensure a smooth 
distribution of elements. The refined mesh, which contains a total of 2316 points, 
is depicted in Fig. 7, where the refinement occurring in the boundary layer regions 
and at the leading and trailing edges is apparent. The figure illustrates the topology 
of the mesh in the vicinity of the leading and trailing edges, where a smooth 

FIG. 8. Illustration of the initial coarse mesh for a two-element airfoil configuration including details 
of the mesh in the gap region (number of points = 5856). 
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FIG. 8-Continued. 

transition from an essentially regular, highly stretched triangulation near the body, 
to a random unstructured triangulation further out in the flow-field is observed. 

The second configuration consists of a main airfoil with a leading edge slat. The 
initial mesh point distribution is obtained by constructing a structured C-mesh 
around each airfoil. The C-mesh about the main airfoil extends out to the far-field 
boundary, while the C-mesh about the slat is truncated less than one chord out 
from the surface of the slat, and also beyond the region where the wake lines from 
the slat impinge upon the main airfoil. This point distribution is then triangulated, 
the stretching values are smoothed, the edges swapped, and finally the point dis- 
tribution is smoothed. The resulting mesh, which contains 5856 points is depicted 
in Fig. 8. The stretching of the mesh in the boundary layer and wake regions of 

581/90/2-2 
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FIG. 9. Mach contours in the flow-field obtained with the Navier-Stokes solution on the initial 
coarse mesh for the two-element airfoil configuration, Mach = 0.5, incidence = 3”, Re = 5000. 

both airfoils is apparent, and a smooth transition of the elements is observed in the 
gap region, between the main airfoil and the leading edge slat. The steady-state 
solution of the Navier-Stokes equations was obtained on this mesh, for a Mach 
number of 0.5, an incidence of 3”, and a Reynolds number of 5000. A plot of the 
Mach contours in the flow-field is given in Fig. 9, where the boundary layer regions 
are evident, and a recirculation region is observed near the trailing edge on the 
upper surface of the main airfoil. A region of low velocity fluid is also seen to occur 
in the gap region between the main airfoil and the slat. A plot of the velocity vec- 
tors in this region, as given in Fig. 10, clearly shows the boundary layer profiles on 
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FIG. 10. Vector velocities in the gap region of the two-element airfoil configuration computed on the 
initial coarse mesh, Mach = 0.5, incidence = 3”, Re = 5000. 

both airfoils, as well as the region of recirculating flow on the lower surface of the 
slat. This solution was then used to adaptively refine the mesh according to the 
local gradient of the Mach number. The refined mesh, depicted in Fig. 11, contains 
11,377 points. Refinement is seen to occur in the boundary layer regions, as well as 
in a portion of the gap region. However, as expected, the regions of recirculating 
flow are left unrefined. This mesh contains triangles of aspect ratio of the order of 
1000: 1 in the wake regions, and up to 100: 1 midway along the surface of the main 
airfoil and on the upper surface of the slat. 

From the figures, it can be seen that an essentially regular triangular mesh is 
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obtained in most of the boundary layer regions. However, in regions where two 
bodies are within close proximity to one another and in regions where mesh adap- 
tation takes place, the mesh point distribution may become somewhat irregular. 
This irregularity of the mesh way have adverse effects on the accuracy of the solu- 
tion in the boundary layer region. In order to compare theoretical and computed 
boundary layer profiles on such meshes, a profile at a particular streamwise station 
must be constructed by interpolating the values from the closest mesh points in 
regions where the mesh is irregular. This procedure introduces additional interpola- 
tion errors, thus creating further uncertainties in the comparison. Further work is 
therefore required to more precisely assess the effect of the mesh structure on the 
flow solution in these regions. 

FIG. 11. Illustration of the adaptively retined mesh for the two-element airfoil configuration 
including details of the mesh in the gap region (number of points = 11,377). 
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FIG. 1 I-Continued. 

8. CONCLUSION 

A method for adaptively generating unstructured triangular meshes with 
highly stretched elements, suitable for Navier-Stokes computations has been 
demonstrated. The method is efficient, in that once an initial coarse stretched 
triangulation has been set up, all further refinements are of a local nature and have 
a near linear computational complexity. For the two-element airfoil mesh of the 
previous section, the initial coarse mesh required approximately 210 CPUs to 
generate on a Convex C-l computer. Roughly one third of this time was required to 
construct the initial Delaunay triangulation in physical space, and the remainder 
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was required by the edge-swapping algorithm, which converged in 13 passes 
through the mesh. The adaptive refinement of this grid, which effectively doubled 
the number of mesh points, required roughly 80s of CPU time. 

In the examples presented in this work, the stretching factors for the mesh were 
not determined adaptively by the flow solution, but by the initial mesh, and are 
held constant throughout the adaption process. In future work, it may be possible 
to modify the stretching vectors according to the evolving flow solution. At each 
adaptation stage, the mesh can then be reconfigured according to the new values 
of the stretching vectors using the diagonal swapping algorithm. However, since the 
mesh point distribution must be closely linked to the distribution of stretching in 
order to obtain a smooth mesh, it may prove desirable to regenerate the entire 
mesh starting with new mesh point and stretching distributions, both determined by 
the flow solution. 

The extension of this technique to three dimensions is not entirely 
straightforward. Although Bowyer’s algorithm extends readily to higher dimensions, 
the equiangular property applies only in two dimensions, and thus no 
straightforward counterpart to the edge-swapping algorithm exists in three dimen- 
sions. However, all the other concepts apply in three dimensions; thus if an initial 
coarse stretched mesh can be generated in three dimensions, then it may easily be 
adaptively refined. 
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